Karomah Surat Al-ikhlas
Surat Al-Ikhlas merupakan bacaan yang sangat besar faedahnya, apabila di amalkan dengan sunguh-sungguh dan istiqomah. Dalam hal ini akan di kupas faedah dan rahasia yang terkandung di dalamnya.
Berikut Hikmah Surat Al-Ikhlas:
  • Membangkitkan aura pesona wajah agar tampak cantik alami.
  • Melancarkan jodoh.
  • Dilancarkan usaha.
  • Kerukunan suami istri.
  • Pengasihaan.
  • Disayangi atasan atau bawahan.
  • Dapat menarik lawan jenis.
  • Disayangi orang banyak.
  • Dapat pula dipergunakan oleh Agen atau Makelar dagang, supaya banyak relasi.
  • Dan masih banyak lagi keutamaan yang tersimpan di dalamnya.
  • Pengobatan Alternatif Medis dan Non Medis
  • Ingin jual tanah, rumah, atau kendaraan bermotor. (Insya Alloh proses cepat)
Bagi Anda yang berminat mendapatkan Karomah Surat Al-Ikhlas ini. Sikahkan kirim data diri anda. dan isi dengan benar sesuai identitas Anda.
- Nama Lengkap
- Nama Ibu Kandung
- tgl Lahir
- Alamat
- Pesan Anda. (Misalnya: untuk dagang/jodoh)
Kirim ke:
Mudah-mudahan Alloh S.W.T senantiasa mengabulkan segala cita-cita Anda.
Terima Kasih.
Wassalam,
Penyelenggara  

Monday, January 3, 2011

Membuat Sel Surya Sendiri? Bagian 1 : Pengolahan Silikon

Terdapat beberapa pertanyaan dari banyak pengunjung yang sayangnya belum sempat penulis respon. Banyak cara dan bentuk pertanyaannya, namun inti kesemuanya ialah sami mawon. Pertanyaan yang pertama berkaitan dengan adanya kemungkinan membuat atau merakit sel surya sendiri atau secara mandiri. Sedangkan pertanyaan kedua ialah pemanfaatan bahan baku sekitar untuk dijadikan sel surya lebih khusus lagi untuk sel surya jenis silikon yang saat ini merajai pasar sel surya. Nah, tulisan ini akan sedikit mengupas dua pertanyaan tersebut dengan cara menggabung dua pertanyaan di atas dalam dua artikel yang terpisah; bisakah kita membuat sel surya secara mandiri dengan berbahan baku alam sekitar?


Penulis yakin manisnya janji dan indahnya mimpi yang ditawarkan oleh teklnologi sel surya untuk menyediakan listrik dalam jangka panjang telah mengundang pemikiran-pemikiran bahkan niatan untuk mengembangkan sel surya sendiri di tanah air. Bentuk fisik sel surya yang terlihat amat sederhana, mudah dipasang dan cukup mudah dibawa , mengundang anggapan mudahnya membuat sel surya. Kemudian, setelah mengetahui bahwa bahan dasar sel surya jenis silikon sejatinya ialah pasir atau tanah mengandung silika yang banyak di jumpai di tanah air, bertambah lagi anggapan umum bahwa sel surya sangat mungkin dikembangkan di tanah air yang jelas aroma bisnisnya akan cukup menyengat di masa depan.

Seorang rekan pengunjung Blog ini menulis sebuah pertanyaan seperti di bawah. Pertanyaan ini penulis  ambil sebagai sebuah sampel dari beberapa pertanyaan serupa sebelumnya dan artikel ini penulis persiapkan guna menjelaskan apa dan bagaimana pengolahan silikon dari pasir silika itu, serta menimbang-nimbang apakah produksi silikon untuk sel surya dapat kita lakukan atau tidak.
Salam kenal Pak Adhi..
Saya tertarik untuk memproduksi poli kristal ataupun mono krital silica. mengingat di tanah air terdapat banyak sekali pasir silika namun penggunaannya masih belum maksimal. Pertanyaan saya, apakah untuk mengkonversi silika dari alam menjadi poli/mono kristal memerlukan proses yg rumit? Dan berapakah kira2 biaya investasi yg dibutuhkan..
Terima kasih..
Silikon terdapat banyak di bumi. Ia merupakan unsur kedua terbanyak di kulit bumi setelah oksigen. Terdapat di alam dalam bentuk pasir silika atau yang dikenal juga degan quartz dengan rumus kimia SiO2. Tanah dimana kita pijak pun mengandung silikon. Sebagai contoh, di Indonesia penamnangan pasir silika ini dilakukan di Kalimantan Tengah dan Jawa Tengah. Di pesisir pantai selatan Jawa juga diyakini memiliki kandungan pasir silika. Silikon yang dipakai untuk keperluan semikonduktor dan sel surya diambil dari hasil pemisahan Si dan O. Saat ini, penghasil silikon terbesar di dunia ialah Cina, Amerika, Brazil, Norwegia dan Prancis. Cadangan sumber daya silika dan ketersediaan tenaga listrik yang cukup besar menjadi alasan mengapa negara-negara di atas memimpin dalam menghasilkan silikon.

Butuh listrik besar.
Tahap pertama pembuatan silikon dimulai dengan jalan memisahkan silikon dari SiO2. Pemisahan ini dilakukan di dalam sebuah tanur (furnace) yang disuplai dengan listrik berkekuatan tinggi. Skema tanur untuk pemisahan silikon dapat dilihat di bawah ini.
Gambar 1. Skema pemisahan/pembuatan silikon dari pasir silika. Diadaptasi dari sini.
Pasir silika dan karbon (C) secara bersamaan (gambar paling kiri) dimasukkan ke dalam tanur yang dilengkapi dengan elektroda tempat arus listrik mengalir masuk (gambar tengah). Silikon dipisahkan dengan jalan mereaksikan pasir silika dengan karbon pada suhu tinggi, yakni di atas 1900 hingga 2100 derajat celcius. Hal ini mengingat baik pasir maupun karbon merupakan dua zat padat yang mana reaksi akan berlangsung hanya pada saat mereka melebur/mencair/meleleh, ditambah lagi dengan titik leleh pasir silika yang di atas 1800 derajat Celcius. (Reaksi kimia tidak disertakan).

Tingginya suhu proses pemisahan silikon dari pasir silika membawa konsekuensi tingginya konsumsi listrik yang mutlak digunakan. Mengapa musti dengan listrik dan bukan dengan pembakaran? Pembakaran manapun tidak akan mampu mencapai suhu proses yang diperlukan untuk mereaksikan pasir silika dengan karbon, sehingga hanya dengan jalan mengalirkan aurs listrik besar-lah suhu proses ideal mampu dicapai.
Tercatat sekitar 10 hingga 30 MW (MegaWatt) listrik dibutuhkan dalam proses ini tergantung dari seberapa besar tanur yang dipakai. Tidak heran jika hanya negara-negara yang memiliki sumber daya listrik melimpah dan bersumber dari PLTN atau lainnya-lah yang dapat secara ekonomis memisahkan silikon dari pasir silika karena tenaga listrik yang dibutuhkan dalam proses ini sangatlah besar; sekitar sepersepuluh listrik yang dihasilkan oleh PLTU Muara Karang (300 MW) habis hanya untuk proses ini.
Gambar 2. PLTU Muara Karang. Sepersepuluh dari kapasitasnya yang 300 MW itu dibutuhkan untuk memisahkan silikon dari pasir silika.

Silikon yang dihasilkan dari pemisahan Si dan O pada pasir silika perlu dimurnikan kembali untuk mencapai kadar kemurnian silikon di atas 99%. Ada dua tahapan untuk memurnikan silikon hasil pemisahan pasir silika. Tahap pertama, silikon hasil pemisahan masih memiliki „pengotor“ berupa besi (Fe), aluminium (Al), kalsium (Ca) titanium (Ti) dan karbon (C) yang harus dikeluarkan. Tahapan ini dilakukan pada proses pemurnian persis setelah leburan silikon keluar dari tanur (Gambar kiri tengah). Proses ini melibatkan gas oksidatif yang dilakukan pada suhu 1700 derajat Celcius. Listrik berdaya besar masih diperlukan di tahap ini. Sampai tahapan ini, silikon yang dihasilkan disebut dengan metallurgical grade silicon dengan kadar pengotor dalam satuan bagian per sejuta (ppm, parts per million) yang sejatinya sudah cukup untuk dipergunakan untuk banyak keperluan.
Tahapan berikutnya, ialah persiapan dan pemurnian silikon untuk bahan dasar sel surya maupun semikonduktor atau yang disebut dengan semiconductor grade silicon. Tahap ini dilakukan di tempat lain yang terpisah dari proses pemisahan silikon. Untuk diketahui, silikon untuk keperluan semikonduktor membutuhkan kadar kemurnian yang sangat sangat tinggi yang berbeda dari metallurgical grade silicon. Di dunia semikonduktor, dikenal dengan „eleven-nine“ atau 11 angka 9 yang menyatakan kadar kemurnian silikon dalam persen; 99,999999999%. Silikon untuk keperluan semikonduktor harus memiliki unsur pengotor dalam satuan bagian per semilyar (ppb, parts per billion) atau bagian per setrilyun (ppt, parts per trillion). Sederhana saja, jika kadar kemurnian silikon di bawah nilai nominal tersebut, dapat dijamin bahwa sebuah prosesor atau memori komputer atau sel surya tidak dapat berjalan dengan baik.

Pemurnian silikon untuk keperluan sel surya maupun semikonduktor lain dilakukan dalam bentuk gas melalui proses yang disebut dengan proses Siemens. Silikon dari tahap pemurnian pertama (metallurgical grade silicon) direaksikan dengan gas asam klorida (HCl) untuk membuat gas silikon klorida. Proses reaksi ini dilakukan pada suhu 350 derajat Celcius.
Silikon klorida kemudian dimasukkan ke dalam reaktor Siemens (gambar di bawah) bersama-sama dengan gas hydrogen. Di dalam reaktor Siemens terdapat batangan umpan silikon (silicon feed rod) berbentuk U terbalik yang dipanaskan pada suhu 1100 derajat Celcius dan pendingin. Silikon klorida mengalami reaksi dekomposisi atau reaksi penguraian menjadi silikon pada permukaan batangan umpan silikon, dan silikon hasil penguraian ini menempel dan terendap di batangan tersebut. Semakin lama proses, semakin banyak silikon yang mengendap yang kemudian membesar menjadi silikon dengan kadar kemurnian 11 angka 9 di atas (reaksi kimia tidak disertakan).
Gambar 3. Skema diagram proses dan reaktor Siemens untuk memurnikan silikon. Diadaptasi dari sini.
Sampai di sini, silikon sudah memiliki kemurnian yang dapat dimanfaatkan untuk keperluan sel surya.

Silikon untuk sel surya
Sel surya dibuat dari silikon yang berbentuk bujur sangkar pipih dengan ukuran 5 x 5 cm atau 10 x 10 cm persegi. Ketebalan silikon ini sekitar 2 mm. Lempengan bujur sangkar pipih ini disebut dengan wafer silikon untuk sel surya. Bentuk wafer silikon sel surya berbeda dengan wafer silikon untuk semikonduktor lain (chip, prosesor komputer, RAM memori) yang berbentuk bundar pipih meski memiliki ketebalan yang sama (lihat gambar bawah).

Gambar 4. Wafer silikon untuk keperluan elektronika (bundar pipih) dan sel surya (persegi berwarna biru).
Wafer silikon ini dibuat melalui proses pembuatan wafer silikon dengan memanfaatkan silikon berkadar kemurnian tinggi sebelumnya (semiconductor grade silicon). Secara ringkas, penulis paparkan beberapa cara membuat wafer silikon untuk keperluan sel surya.
1. Wafer silikon jenis monokristal.
Mono kristal di sini berarti silikon tersebut tersusun atas satu kristal saja. Sedangkan jenis lain ialah wafer silikon polikristal yang terdiri atas banyak krstal. Wafer silikon monokristal dibuat melalui proses Czochralski (Cz) yang merupakan jantung dari proses pembuatan wafer silikon untuk semikonduktor pula. Prosesnya melibatkan peleburan silikon semiconductor grade, diikuti dengan pemasukan batang umpan silikon ke dalam leburan silikon. Ketika batang umpan ini ditarik perlahan dari leburan silikon, maka secara otomatis silikon dari leburan akan mennempel di batang umpan dan membeku sebagai satu kristal besar silikon. Suhu proses berkisar antara 1000-1200 derajat Celsius, yakni suhu di mana silikon dapat melebur/meleleh/mencair.  Silikon yang telah membeku ini akhirnya dipotong-potong menghasilkan wafer dengan ketebalan sekitar 2 milimeter.

Gambar 5. Skema proses Cz untuk membuat wafer silikon. (Atas) Reaktor tempat pembuatan wafer slikon, (Tengah atas) Keadaan silikon yang tengat ditarik oleh batang pengumpan. Perhatikan warna silikon yang berpijar tanda masih dalam keadaan setengah cair/lelehan. (Tengah bawah) Ruangan pabrik pembuatan wafer silikon yang selalu terjaga kebersihannya dan seragam yang selalu dipakai pekerjanya. (Bawah) Wafer silikon yang dihasilkan (diameter 20-40 cm panjang bisa mencapai 1-2 m). Diadaptasi dari sini dan sini dan sini.
Gambar 6. Sel surya yang menggunakan bahan dasar silikon monokristal. Perhatikan warna biru yang homogen pada sel surya tersebut.
2. Wafer silikon jenis polikristal.
Wafer silikon monokristal relatif jauh lebih sulit dibuat dan lebih mahal. Silikon monokristal inilah yang digunakan untuk bahan dasar semikonduktor pada mikrochip, prosesor, transistor, memori dan sebagainya. Keadaannya yang monokristal (mengandung hanya satu kristal tunggal) membuat silikon monokristal nyaris tanpa cacat dan sangat baik tingkat hantar listrik dan panasnya. Sel surya akan bekerja dengan sangat baik dengan tingkat efisiensi yang tinggi jika menggunakan silikon jenis ini. 

Namun demikian, perlu diingat bahwa isu besar sel surya ialah bagaimana menurunkan harga yang masih jauh dari jangkauan masyarakat. Penggunaan silikon monokristal jelas akan melonjakkan harga sel surya yang akhirnya justru kontraprduktif. Komunitas industri dan peneliti sel surya akhirnya berpaling ke jenis silikon yang lain yang lebih murah, lebih mudah dibuat, meski agak sedikit mengorbankan tingkat efisiensinya. Saat ini, baik silikon monokristal maupun polikristal sama sama banyak digunakan oleh masyarakat.
Gambar 7. (Atas) Salah satu contoh aktifitas peleburan material (logam, slikon, dll.) (Bawah) Sel surya berbahan baku silikon polikristal. Perhatikan warna terang gelap pada sel surya yang menandakan kristal kristal yang berbeda arah dan besarnya.

Pembuatan silikon polikristal pada intinya sama dengan mengecor logam (lihat Gambar di bawah). Semiconductor grade silicon dimasukkan ke dalam sebuah tungku atau tanur bersuhu tinggi hingga melebur/meleleh. Leburan silikon ini akhirnya dimasukkan ke dalam cetakan cor dan selanjutnya dibiarkan membeku. Persis seperti pengecoran besi, aluminium, tembaga maupun logam lainnya. Silikon yang beku kemudian dipotong-potong menjadi berukuran 5 x 5 atau 10 x 10 cm persegi dengan ketebalan kira-kira 2 mm untuk digunakan sebagai sel surya.  Proses pembuatan silikon polikristal dengan cara ini merupakan proses yang paling banyak dilakukan karena sangat efektif baik dari segi ekonomis maupun teknis.
Secara umum, proses pembuatan sel surya mulai dari dari silikon dapat dilihat pada gambar di bawah ini. Proses pembuatan sel surya sendiri telah diterangkan sebelumnya.
Perbandingan dengan industri besi dan baja
Sebagai penutup artikel ini, penulis mecoba membandingkan industri pengolahan silikon dengan industrui besi dan baja di tanah air. Sebagaimana kita ketahui, industri besi dan baja kita mengandalkan bahan baku dalam negeri dengan salah satu yang terbesar ialah PT Krakatau Steel (PT KS). Penulis pernah berkunjung ke PT KS beberapa tahun lalu dan melihat sendiri fasilitas yang dimilikinya, termasuk pelabuhan sendiri serta (kalau tidak salah) pembangkit listrik sendiri atau disuplai dari pembangkt listrik terdekat.

Industri pengolahan silikon hingga siap pakai untuk sel surya penulis ibaratkan sama dengan industri baja, baik dari segi kerumitan maupun investasinya. Besi mudah ditemui, diolah bahkan dijadikan kerajinan. Sudah banyak industri kecil kita yang mampu membuat sendiri alat alat dari besi maupun baja. Namun demikian, ketika hendak berbicara mengenai produksi massal yang memanfaatkan besi, maka pembuatan besi maupun baja sudah melibatkan perhitungan untung rugi ekonomisnya sejak dari penambangan bijih besi. Untuk dapat mengolah bijih besi menjadi besi, dibutuhkan invetasi besar; penambangan bijih, pemisahan bijih, peleburan, pengolahan dan sebagainya seperti apa yang dilakukan PT KS.

Sama dengan pengolahan silikon. Bahkan untuk hal ini, silikon membutuhkan investasi yang lebih besar dari pembuatan besi dan baja mengingat ada komponen ekstra dalam menjaga kebersihan dan ongkos energi yang sangat besar berbanding dengan hasil produksi. Betul bahwa pasir silika banyak terdapat di tanah air, namun demikian, untuk mengubahnya menjadi barang yang jauh berharga semisal semikonduktor atau sel surya, sangat mustahil dilakukan oleh perorangan atau industri kecil-menengah. Hal ini bukan hanya dikarenakan persoalan modal saja, melainkan secara ilmiah-alamiah, mengubah pasir silika menjadi silikon saja tidak dapat dilakukan dengan cara sembarangan atau cara yang disederhanakan.
Bidang ini harusnya diserahkan kepada pemerintah atau investor asing/besar yang berminat bermain di penyediaan bahan baku dasar sel surya atau semikonduktor.

0 comments:

Post a Comment

Lazada Indonesia

 
Design by Wordpress Theme | Bloggerized by Free Blogger Templates | coupon codes